

Getting Started with the
Btrieve API within Zen v14

From Visual Studio C

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 13

Getting Started with the Btrieve API within Zen v14 from
Visual Studio C
Last Updated: 01/26/2022

The hardest part about learning a new development environment, whether it be a new
language, GUI, API, database, or just about anything else, is locating the “right” starting
point to get your project kicked off. This is quite like the “blank page” syndrome some
writers feel when starting a new project.

In most books about a new language, this is addressed by the obligatory “Hello World”
application, which serves as an introduction to the environment as a whole, including the
proper syntax to write, compile, and execute your applications.

In that same vein, this simple step-by-step guide was created to show you each piece of
the environment needed to start a new Visual Studio C project accessing the Btrieve API.
One of the major issues with such a document is that the user interface changes over
time, making the guide useless to a true beginner. To that end, please be aware that some
UI elements here may not match exactly what you see, but you should be able to track
down the right spot with a bit of hunting.

Prerequisites

This document assumes that you already have the development environment and database
engine installed and functioning. Specifically, this guide contains UI images from Visual
Studio 2019 and Actian Zen v14, but whatever version you have should at least be similar
enough to follow along. If you need help installing these two components, then refer to
the documentation for each component as needed.

Downloading and Installing the Btrieve SDK

In addition to the development environment, you will need the Btrieve SDK download
from Actian. As of this writing, you can find this file at:

https://esd.actian.com/product/Zen_PSQL

Select the SDK release and Btrieve platform as shown here:

Then from the list of downloads available, download the Btrieve component, which
typically starts with the text “Zen-SDK-Btrieve-Windows”. As of this writing, the file is
fully named:

Zen-SDK-Btrieve-Windows-noarch-14.20.012.000.exe

When you run this file, you will get an Extraction dialog box that looks like this:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 13

Provide a proper path for the files to be extracted and remember where you put them!
Some people like to explode these files into each project to keep everything complete.
However, upgrading a large number of projects to new SDK components gets
complicated, so I prefer to keep everything in one centralized folder for inclusion into
each project from there.

This will create two folders, DOC and INTF, in the target folder. The DOC folder
contains documentation on the API calls in PDF format. The INTF folder, on the other
hand, contains the real “meat” of the interface components, including subfolders for C,
CBuilder, Delphi, Pascal, and VB.Net2010. There is one other critical folder called
IMPLIB that contains the import libraries, which we will use when linking.

For this project, we are going to work on a C application, so let’s drill a bit further down
into the C folder and see what is in each file, in alphabetical order:

 BLOBHDR.H: This file contains the definitions of constants and data structures
needed for Chunk operations. Chunk operations are a bit complicated, and will
not be covered here, but it is far easier to use these definitions than to attempt to
write your own.

 BTISTRUCT.H: This file contains other structure definitions and constants for
the CREATE and STATEXTENDED operations, among others.

 BTITYPES.H: This file contains platform-independent type definitions for the
various Btrieve data types, which is important as some compilers use different
definitions for the same types (e.g. “long long” = “LARGE_INTEGER” = “signed
__int64”). This header file makes it possible to simply use BTI_LONGLONG or
BTI_INT64 in your own code, and let the translation occur in the header.

 BTRAPI.C: This C source code module actually provides the definition for the
BTRV and BTRVID functions, which handle some of the extra load required to
call BTRCALL and BTRCALLID by simply wrapping these operations to make
them easier to use.

 BTRAPI.H: This header file provides the definitions for the functions in
BTRAPI.C and should be included in your own code.

 BTRCONST.H: Another important header file you should include directly into
your application, this one defines many of the commonly-used constants, such as
the operation codes, file open modes, status (return) codes, key type numbers, and

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 13

more. While you certainly do not need to leverage these constants, doing so can
make your code much more readable.

 BTRSAMP.C: This is Actian’s equivalent of the Hello World application, this
sample code shows you how to do some of the basic operations, such as creating a
Client ID, making a Version call, opening a file, reading a record, creating a new
file based on the old one, reading records with a GetNextExtended call, and
inserting records into the newly-created file.

 BTRVEXID.H: This header file is new for PSQL v13 and newer, and provides
the interface definitions for the BTRVEX and BTRVEXID functions. These
functions are available ONLY in v13 and newer, but are required if you intend to
access any database files (in v13 format) that contain more than 4 billion records
or are larger than 256GB in size.

 LOGINAPI.C: Another sample file, this one demonstrates how to use the Btrieve
Login API function.

 MAKEFILE: This makefile is provided for older command-line compilers, so
you might never need this.

The last file you will need for your application is located in the IMPLIB folder. The file
W3BTRV7.LIB will contain the library definitions from the core interface DLL
(W3BTRV7.DLL) which is linked into your application to provide the BTRCALL
functions used to access the Btrieve API from 32-bit applications. If you are writing a
64-bit application, then you will instead use the W64BTRV.LIB and DLL.

AN IMPORTANT NOTE ABOUT PACKING

If you look at the header file BTISTRUCT.H, you will see that it repeatedly wraps each
structure definition inside a #pragma pack(1) statement. This is done because most
Btrieve structures are packed with single-byte alignment, whereas the default compiler
option may be to pack on a 4-byte boundary. This can be better explained with the
following structure definition:

typedef struct
{
 BTI_UINT32 Value1;
 BTI_BYTE Value2;
 BTI_UINT32 Value3;
} MY_DATA_STRUCTURE;

With byte alignment (i.e. pack(1)), this data structure will be 9 bytes in length. However,
with the default 32-bit alignment (i.e. pack(4)), the compiler will insert 3 bytes of filler to
align the Value3 variable on a longword boundary, and this structure will actually be 12
bytes long. This is done for performance reasons at the CPU level.

In itself, alignment is immaterial, but if you are trying to match an existing definition,
you may find that the data is shifted when you read or write it, and this can cause much
wailing and gnashing of teeth as nothing lines up correctly.

In short, be sure to force all of your own data structure definitions to pack(1) as well!

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 13

Now that we’ve got THAT out of the way, let’s dig right in!

Creating a New Visual Studio Project

The first step to building our new application is to create a new project in Visual Studio.

For this simple project, we are going to create a console application that be run directly
from a command line, so we’ll select this option next:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 13

We then name the project and create the project folder, then click Create:

This will now create the project and a smattering of starting files, as shown here:

The source code file, BtrieveTest.CPP, contains starter “hello world” code for you
already:

In fact, you can (and probably should) compile this code immediately and verify that it
works as expected.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 13

Import Needed Files from the Btrieve SDK

If you expect to be building many different projects, then you will be better off setting up
your development environment with a single set of SDK files. This can be done by
creating a folder at some higher level where the files can reside, or it can be done by
adding the SDK folder to the the Additional Include Directories value in your project
properties:

Note that when configuring something like this, you should set the Configuration option
to “All Configurations”. If you leave it set to Debug or Release, then you’ll quickly dfind
that you have to make the change multiple times.

However, if you are building a single project, then it is simple enough to copy the needed
files from the Btrieve SDK download into your project folder, and this is the solution we
will use here.

1. First, copy the files you intend to use from the SDK folder into your project
folder. In this case, we expect to use BTRCONST.H, BTITYPES.H, BTR,
BTRVEXID.H and BTRAPI.H header files, as well as the BTRAPI.C source file.

2. Then, from the INTF folder, copy over the appropriate library file. IN this case,
we are building a 32-bit application, so I’m bringing over W3BTRV7.DLL from
the WIN32 folder.

3. In Visual Studio Solution Explorer, right-click the Header Files line and add each
header file in turn:

4. Do the same for the BTRAPI.C file in the Source folder.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 8 of 13

You’ll now have a solution that looks like this:

If you attempt to build the solution now, you will get an error about a missing directive.
(Try it and see for yourself!) This brings us to the next step, configuring the project.

Configure the Project Compiler and Linker Options

With platform-independent header files, we have to tell the preprocessor which platform
we are building for. While it may be tempting to simply add a #define right into the top
of your source code, you should avoid doing this. At some point in the future, you may
want to target a different environment (e.g. 64-bit Windows), and changing this in the
compiler options is simply easier in the long run.

As we are building a 32-bit application, we need to define the compiler directive
“BTI_WIN_32” so that the proper definitions are constructed at compile-time. To do this,
open your project properties screen again, make sure that “All Configurations” is
selected, and go to the C/C++ Preprocessor options, and add the definition to the top line:

Now, the code will compile successfully, but you will now get linker errors:

error LNK2019: unresolved external symbol _BTRCALL@28 referenced in function _BTRV@24
error LNK2019: unresolved external symbol _BTRCALLID@32 referenced in function _BTRVID@28

To fix this, we ALSO need to tell the compiler about the linker library.

1. Go back to the Project Properties page and verify that All Configurations is
selected.

2. Open the Linker section and go to the Input page.

3. Add the LIB file to the Additional Dependencies screen.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 9 of 13

NOW, you can compile and run your program, and it will work! Of course, it only
outputs a simple “Hello World” message and does nothing with the database, but that’s
the majority of what is needed to get VS configured.

Compile the Sample Btrieve Code

Once we have the environment ready, we can compile the sample code. IN this case, we
are going to take a shortcut and simply coipy ALL of the text from the BTRSAMP.C file
provided in the SDK into out BtrieveTest.CPP file in Visual Studio. This will now look
like the following:

If you’re impatient, you might try to immediately compile the new code. If you took the
extra time to add your header files into the Include path, then you may be delighted to
find that it works. However, if you are following these instructions, you’ll get a boat-
load of undefined identifier messages.

The cause of these errors is in the way the header files are included, with angle brackets,
which assume they are in the standard include path. Change lines 47 and 48 to use quotes
instead:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 10 of 13

Now, everything SHOULD work. However, when we compile and link on Visual Studio
2019, we still get 4 error messages:

While this code worked originally when Actian built the sample code, Microsoft made
some changes in more recent Visuial Studio editions which broke a few things.

The first change makes it impossible to cast a VOID * to a pointer of another type. We
fix this by adding a forced cast to the GNE_BUFFER_PTR in line 441:

gneBuffer = (GNE_BUFFER_PTR) malloc(sizeof(GNE_BUFFER));

This leaves us with the two “unsafe” messages, which stem from the old string handling
library. Back in the “good old days”, you simply called strcpy() to copy a string, and the
string library copied bytes until the first NULL byte was seen. However, if you didn’t
allocate a large enough target buffer, this could overwrite memory or cause access
violations. In an attempt to force developers to be more cognizant of memory errors (and
make code more stable), Microsoft created new functions (like strcpy_s()) that ALSO
require the target string length as a paramater. These functions validate the data as it is
being copied to prevent a memory overwrite.

In older versions of Visual Studio, these issues simply caused warnings to appear, but
newer versions of Visual Studio flag these as hard errors. There are two ways to fix it:

 You can set the compiler directive _CRT_SECURE_NO_WARNINGS (in the
same place you defined BTI_WIN_32). This will disable all of these warnings
and allow your code to compile. Of course, if you overwrite memory, strange
results are your own fault.

 You can change all of the calls to use their secure variants. This requires
changing the function name and adding the extra target length parameter. Note,
though, that this can make your code less portable to a different compiler in the
future.

We’re going to use the Microsoft recommendation and change lines 308/309:

 strcpy_s((BTI_CHAR*)keyBuf1, 255, FILE1_NAME);
 strcpy_s((BTI_CHAR*)keyBuf2, 255, FILE2_NAME);

Think you’re done now? Indeed you are! The project now compiles and runs!

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 11 of 13

However, if you look closely, you’ll see that we get an error (35) when this is running.
Looking up this error in the header file, we find that this equates to “B_DIRECTORY_ERROR”.
This error is returned because Actian changed the default location of the SAMPLE.BTR
file between the time this sample code was created and the current v14/v15 releases.

Thankfully, fixing it is as easy as changing PSQL to Zen in two lines, 65/66:

#define FILE1_NAME "c:\\ProgramData\\Actian\\Zen\\samples\\sample.btr"
#define FILE2_NAME "c:\\ProgramData\\Actian\\Zen\\samples\\sample2.btr"

Rebuild the application and run it, and you should now get a full test run of the sample
code which opens a file, reads a record and displays some data from it, then copies a set
of records from one file to another. Whee!

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 12 of 13

Closing Remarks

We have covered most of the more maddening issues that you’re likely to run into
thoughout this paper. However, I’d like to leave you with a few additional thoughts:

 If you switch between DEBUG and RELEASE modes in your application and
things suddenly don’t build properly, check the configuration settings. It is
VERY common to modify the project settings and forget to change the
Configuration box to All Configurations. You then make a required change, and
when you switch to the other config, it breaks. Be very careful and always check
this box!

 In order to force structure alignment on a byte boundary, it used to be common to
set this as a compiler option (/Zp1), which you can do here:

However, some newer Visual Studio libraries simply cannot be used when called

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 13 of 13

with byte alignment, and the linker will spit back errors if you try this. As such,
you will want to be sure to always use pragma statements to force alignment
around your Btrieve structures. Better yet, you can use the pragma stack to
preserve the original alignment outside of your code. This wills like this:

#pragma pack(push,1)
typedef struct
{
 BTI_UINT32 Value1;
 BTI_BYTE Value2;
 BTI_UINT32 Value3;
} MY_DATA_STRUCTURE;
#pragma pack(pop)

 If you will be building multiple projects over the years, then be sure to spend
some time up front learning how to set up the default libraries, so that you can
avoid copying the header and BTRAPI.C files into each project as you go along.
A bit of time setting up the environment up front can save you hours of effort in
the long run.

 If you use a newer SDK (from v13 and above) to build an application, then you
may find that this application refuses to run on the older environments (v12 and
older) due to a missing link for the BTRVEX function. This is caused by the
newer SDK Library (W3BTRV7.LIB) including the function definitions for the
BTRVEX and BTRVEXID functions. You can prevent the loader from resolving
every symbol when the program loads by setting the Delay Loaded Dlls option
for this file:

 If you are looking to use other functions, such as the Distributed Tuning Interface
(DTI) which affords access to the configuration and monitoring of the database
environment, you will need another SDK download (Zen-SDK-DTI-Windows-
noarch-14.20.012.000.exe) which, in turn, includes the needed header and import
library files. Setup is similar to that which is covered here.

Of course, if you still can't get it to work, contact Goldstar Software and let us help!

