

Impact of Latency
On Database Performance

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 8

Impact of Latency on Database Performance
Last Updated: 02/15/2021

One of the most common questions we get is related to application performance. In other
words, users want to know why their system is running so slowly, and (if possible) how to
make it run faster. This sounds like a valid question, right? Well, it’s actually quite
complicated, and we need to break it down into a number of factors.

Let’s start with a simple definition – what is “performance”? Most people look at what I
would call perceived application performance. This can be determined by monitoring the time
it takes from when a user issues a command (for example, via a mouse click) until the time
that a response is displayed on the screen. In most cases, a stopwatch is the best monitoring
tool, but if you’re unlucky, you might need a clock (or even a calendar).

But, what actually goes into this total time needed for a process? In reality, this is split into the
sum of the time it takes to complete every step of the task. Let’s look at the various steps with
respect to a database application that is reading ONE record from the database. This process
then includes:

1. Queueing of the mouse-click event in the local OS
2. Receiving of the event by the application
3. Application think time needed to process the event locally and decide that a record is

needed from the database
4. Transmission time to send the request across the network to the server
5. Server-side processing time, or the time for the server to locate the database record

requested
6. Transmission time to send the reply back to the workstation
7. Application processing time to receive the data back and deal with it as needed
8. Screen display time – i.e. building the graphical display of the response.

Whew. Of course, most applications don’t request just one record – many will request several
hundred records for each “user requested process”, so we may repeat steps 3-7 several
hundred times, therefore we must add the time on each and every one of these requests
together to get the total perceived application performance time.

So, when a system is perceived by the user to be “slow”, how can we speed it up? There are a
few common solutions often considered:

 Get a Faster Workstation
 Get a Faster Server
 Get a Faster Network

Let’s look at these one at a time.

Get a Faster Workstation
This one seems like a no-brainer. My desktop computer running the application, so it must be
the slow piece. Let’s upgrade it! You now spend $1500 for the latest box with more memory
and hard disk space than you need – but it still doesn’t help.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 8

While getting a faster computer or one with a faster video card will help with items 1, 2, 3, 7,
and 8, most of these gains will only shave nanoseconds off of a process that already takes
microseconds (us). An exception to this would be the case of an application that is doing data
analysis or reporting calculations, in which case it may really benefit more from a faster CPU.

Get a Faster Server
After the new workstations don’t help, you may realize that the database server is running
their database engine itself, so any slowness must be the fault of the server. Again, buying
bigger, faster, better hardware is easy to justify with very little research, and replacing the
workstations didn’t help, so replacing the server seems the next obvious step. Since any
server-centric database application environment will be limited in performance by the
throughput of the server, getting a faster server (or more cores, or more memory) should be a
benefit, right?

There’s actually two common misconceptions here.

 CPU Performance: The first mistake is looking at benchmarks when determining
CPU performance. Many of the common benchmarks are running multi-threaded
applications to simulate workload. These respond really well when you have a CPU
with 32 cores all running in parallel. However, that 32-core CPU may be actually
running at a clock speed of only 2.0GHz. While multi-core CPU’s excel at doing
multiple things in parallel, your one report process that is taking 35 minutes to
complete will only be using one core at a time, and then running at only 2GHz. This is
when you find out that your old server with only 2 cores running at 3.0GHz was
actually around 50% faster than the new box!

 Server Cost: The second mistake is assuming that a high-end server is required.
Buying a box with 64 cores running at 3.2GHz, 512GB of RAM, and really fast SSD’s
in a RAID-10 array is going to be quite expensive. However, that extra money doesn’t
translate into any extra speed for your 10-person network with a 3GB database.

Let’s go back to the factors that are included in performance. Note that any gain due to a new
server is limited because this impacts only step 5 above. Let’s say that you buy a faster
server, and that you have been able to decrease the server-side processing time from 60us to
40us – a 33% gain. That’s wonderful! Now all of your reports run 33% faster, right?

Nope. Assuming a report has to read 100,000 database records to complete. With each record
now being processed 20us faster, the total gain after spending all of the money on the new
hardware (and possibly software) is actually 20us * 100,000 = 2 seconds. Ugh.

And that’s when the frustration sets in. After spending all this money for new desktops and a
really fast server, users are still complaining about their performance!

Get a Faster Network
Most people give up after the first two and just blame the application at that point. To some
extent, it is the application design that is the problem, so this is technically true. However, the
application developers say that on their own servers, these reports (using your test data) take
only 30 seconds, so any problem must be in your environment.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 8

What is the real difference between your environment and the developer’s environment? The
developer is likely using a single, fast test server for running your workload – and everything
is in local memory. They are not running across the network at all!

If you look carefully, at the list of factors impacting performance, steps 4 and 6 involve data
transmission over the network. Together, these two factors comprise the round trip time
(RTT) of your network. This is the total amount of time it takes for the request to leave the
workstation, traverse the network, and arrive at the server, and then for the reply to leave the
server, traverse the network, and arrive back at the workstation.

Using a tool like Wireshark, it is possible to actually capture the network traffic with accurate
timestamps. If you grab a network capture from the workstation and the server together, then
you can directly compute the RTT by looking at the total time from the workstation’s
perspective for a given request to get a reply, and then subtract out the total time for that same
request to get a reply from the server (which is the server’s processing time). So, if a
workstation sends a request to the server and gets back a reply in 240us, and you find that the
server’s processing time on the request was 40us, then you can determine that the round trip
network time was 240 – 40 = 200us. (If you’ve read all the text above and are savvy at math,
you might now realize that losing 200us in the network pales by comparison to the 20us you
saved when you bought that new server.)

Now, what about a slower network connection – one with a 400us RTT? What about a Wifi
connection with an extremely variable connection, with some RTTs clocking in at 1000us or
longer. Let’s extend that further to your wide area network, where your round trip time may
measure 24 milliseconds (ms), or 24000us, or even higher. As you can see, the 20us gains on
the server are lost 1000-fold with each time you have to send a request across the network.

Why Can’t I Get a Faster Network Connection?
The next logical question is whether a faster network will help. However, in the classic sense
of the word, what we consider “network speed” is, in reality, network bandwidth. This is
actually a measure of network capacity, since we are limited by physics when trying to speed
up the electrons that transmit the signal in the wiring.

Let me explain it another way: Let's say that you are out of oranges at home and need to go to
the supermarket. You get in your car, start it up, drive 2 miles, go inside, pick out a bag of 12
oranges, check out, drive home, shut off the car, and go back inside. In this case, the total
time of your journey may be 10 minutes, and your bandwidth (the amount of oranges you can
carry) is 12.

Now, let's look at bandwidth -- how many oranges can you actually carry. Assuming you
have a decent size car, let's assume that your back seat can hold 6 cases of 100 oranges each,
or 600 oranges in total. Your round trip time hasn't changed much. You might argue that it'll
take slightly longer to get the oranges from the store to the car, but if you have help from store
employees (moving orange boxes in parallel), it won't add that much extra time. Your round
trip time may now be 10.5 minutes. However, you just bought 600 oranges, which is your

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 8

maximum bandwidth for the car. If you need to buy 6000 oranges, you’ll need 10 round trips
to the store, each taking 10.5 minutes, or 105 minutes in total. Or, you could spend extra
money on more bandwidth by renting a truck to go to the store – where you can then pack all
6000 oranges in a single load, reducing your total processing time considerably.

However, nobody needs 6000 oranges at a time. What if you want to have just ONE orange
for breakfast, so you go to the store and buy just the ONE you want to eat this morning? Note
that your available bandwidth in the car may be 600 oranges, but your actual payload is only
1 orange. Overall, it still takes 10 minutes round trip time (latency) to get your orange in the
morning. But, after you eat, you decide you are still hungry and go back to the store for
another orange. There's another 10 minutes lost in latency. However, when you get home, you
find that the orange is rotten inside, you have to go back to get another one -- another 10
minutes. Note how each round trip is quite costly overall due to the small payload. The
latency of going to the store is high, so it took you 30 minutes to eat breakfast – even though
you hold the world’s record for fastest orange peeling and eating each orange is really quick.

Can you fix this problem by buying more bandwidth? If you rented a truck that can carry
6000 oranges at a time and then went to buy just one, would it reduce your time lost in transit?
Nope -- not at all. Buying bandwidth is buying capacity, and capacity is rarely a limiting
factor in database performance where many small requests are being made.

The right solution, of course, is to adjust the payload to match your accordingly. You change
your application – er, breakfast – design to buy a "reasonable" number of oranges (12) per
trip. You don’t need to spend the money on a rental truck to get the oranges you need, as your
capacity (600) still outmatches the payload (12). Granted, sometimes you will have a week
where you don’t eat all 12. Some oranges will go bad and need to be thrown out, but in
general, grabbing 12 at a time just makes a lot more sense.

Making Orange Juice
So how does all this fruit really apply to database applications? Most database applications
need to retrieve many different records from the server. However, the next record the
application needs is often dependent on the previous records that have been read. For
example, you may read an Invoice record, and then you need to read the Customer Name for
that Invoice. Later, you need to read all 12 Line Item records for that invoice. You don’t
know which records you need until you read the one before it, so the program has to go back
& forth quite a bit.

When you look more closely at this application design, you realize that the latency (round trip
time, RTT, or whatever we choose to call it) is going to be your biggest factor here. Unlike
reading a Word document where you can make a request for 1MB of data and have it stream
over to you (taking advantage of bandwidth), you can only request one record at a time, and
then wait for it to come back before making the next request.

We could buy more bandwidth, but remember that bandwidth is NOT link speed -- it is link
capacity. The round trip time is the time it takes for the packet to go from the workstation to
the server. In a WAN situation, this could include the time it takes to leave the workstation,

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 8

travel the local LAN wire, go through all local switches, pass the local firewall, get encrypted
for a VPN channel, get routed to the Internet, travel across the uplink to the ISP, be routed by
the ISP to the target network (which may involve many "hops", each involving additional
router delays and data transmission delays caused by distance), be passed down the local line
at the target location, get routed into the VPN device, get decrypted, get placed on the local
LAN segment, get passed through any local segments and switches, and get to the server.
Then, the server can find the data and sent it back via the reverse route (which is just as long).
I should also note that if you are using Wifi on either side, this will add even more latency.
(Pro tip: Stick with hard-wired connections only.)

Factors Impacting Network Latency
What really goes into this latency time? Each router hop will add latency, so reducing hops is
usually the first/best solution. If you do a TRACERT to the target server and you see 12 hops,
then you have to realize that you are adding latency for each hop (which may be dependent on
load on each device, in addition to bandwidth between devices). If you are going through
three hops just to get out of your own network, then reducing that is easy. Reducing hops on
your ISP's network is usually much harder. You also have no control over how busy the
routers are (which can add more time) or how congested the links are (even at their utility-
scale bandwidth). However, you could pay for a direct fiber optic line to be run from one
location to the other, which will cut your hop count by quite a bit -- assuming you can afford
the monthly charges.

Switches, while being much faster than routers, also add latency, even if they are “cut-
through” switches. Even an enterprise-class switch like a Cisco Catalyst 3850 has a minimum
latency of 5 microseconds, and the cheap switch you might pick up from a local big box store
may be considerably higher. Check your switch specs (from the vendor) to get a feeling for
how much time you can expect to lose in each switch.

Next up is total distance. People don't think about cable length being important, but it actually
is. The electron wave (i.e. the physical manifestation of your data) travels down a copper
cable at approximately 2/3rd the speed of light. How fast is a fiber cable? Also 2/3rd the
speed of light, because light is slowed down by the glass and internal reflections, too. While
this is still really fast (186000 miles/second), it is also finite and real. If your total physical
cable length is 186 miles, then you are losing 1ms in propagation delay alone. Note that a
dedicated fiber line is also a way around this -- if you can select a shorter route, then you can
reduce propagation delay accordingly.

Of course, if you don’t believe me, the proof is in the math. Let’s even take a real-world
example. I had a company upgrade their environment to brand new servers in a brand new
data center, with a dedicated fiber optic line between the two sites running at 10 gigabit
“speed”. Of course, user applications got slower. When pressed for details, it turned out that
the new data center in a protected building some 10 miles away, there were all sorts of VPNs
and VLANs in use, and the total network round trip time went from 0.2ms for the local users
to around 7ms for users running remote to the data center. Although 7ms sounds fast, you
have to understand that 7ms is 35 times slower than what they had before!

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 8

Solving the Latency Problem
Unfortunately, the limitations of the physical world restrict us from eliminating much of the
latency in the typical connection. Until someone perfects ansible communications through
quantum entanglement, the speed of light will always be a limiting factor. However, here are
a few more realistic things to consider:

1. Pay for more bandwidth. Again, this will ONLY help if the link is already saturated,
but it’s where most people start, unfortunately. Don’t make this mistake unless you
have the data to prove that link capacity is the issue!

2. Pay for a dedicated fiber link. Many ISP’s will offer a direct site-to-site link to you,
though the monthly cost may cause you to lose consciousness for a short time.

3. Reduce Network Devices. If you are dealing with a local network only, then you’ll
have control over the number of switches, routers, media converters, and other devices
that look at each packet. Reducing the number of devices between the client and the
server will definitely help.

4. Reduce Network Distance. Again, under local control this is easy – use the shortest
possible cables, and locate the users physically close to the servers to minimize latency
caused by distance. (Often you can reduce network devices AND distance at the same
time.)

5. Leverage a Cache. Some database environments, like Zen/PSQL, support a client-
side cache that can store a small amount of data within client memory and eliminate
the need to go across the wire for every packet. Even saving 25% of your network
round trips can result in a notable performance gain. Unfortunately, not all
applications are compatible with the Client Cache Engine (CCE), so this may or may
not be available to you.

6. Redesign the Application to Optimize Data Reads. If you are in control of the
application, you can redesign it to make more efficient use of the database. For
example, instead of read a list of invoices one at a time for a report, you can read 100
invoices at a time with a single, larger request. This can save 99% of your round trip
times! For Btrieve-based applications, look at Extended Operations. Or, use SQL
queries with a large client-side buffer and client-side cursors to retrieve the data very
rapidly.

7. Redesign the Application to Eliminate Data Reads. This is similar to the above, but
even better. Let’s say you are reading 10,000 invoices for a report. For each invoice,
you need to also read the Customer Name. Of those 10,000 invoices, though, they are
only being sent to about 1500 unique customers. As you read the first one, you save
the Customer ID along with the customer name that comes back from the subsequent
lookup. The next time you need to look up a customer, you can quickly check the list
of ID’s and names that you’ve already read and find it, eliminating the need to go back
across the wire yet again. Yes, this takes CPU time and memory, but you did just
replace your workstations with really fast boxes, right?

8. Change Where You Run the Application. Instead of running the application on the
workstations, set up a computer or terminal server directly in the data center,
connected to the same core switch as the database server, and run your applications
remotely from that machine. Now, the only things crossing the network are keystrokes
and mouse events from the user, and screenshots streaming back from the terminal

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 8 of 8

server. All of the latency is limited (because the client is close to the server), and the
delays on the screenshots are minimal.

Side-Bar for Physics Majors: Wait -- What About Wifi?
In the discussion above, we noted that the propagation speed of the electron wave in a copper
cable was about 2/3rd the speed of light. Further, the transmission of light in a fiber optic
cable is about the same – 2/3rd the speed of light. Wouldn’t WiFi communications actually be
FASTER, since the radio waves propagate at the speed of light through the atmosphere?

Indeed, this is true! However, it doesn’t help. The radio spectrum is a shared medium, and
WiFi adapters can’t simply blurt out what they want to transmit any time they want. They
must either first announce their intentions with a request-to-send (RTS) and obtain a clear-to-
send (CTS) back before transmitting, or they have to somehow detect when a collision occurs
or when a packet is lost due to multiple devices communicating at the same time. Due to the
algorithms involved in this, along with the overhead in the wireless-to-wired media
conversion, WiFi ends up FAR slower than a wired connection.

If you still have questions, contact Goldstar Software and let us work with you to help!

