

Securing Your
Zen/PSQL Database

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 13

Securing Your Zen/PSQL Database
Last Updated: 02/05/2021

When it comes to data security, the rules are changing quickly. Legislation around data
protection in the health care (HIPAA) and criminal justice (CJIS) arenas has presented
challenges to some developers for many years now. More recently, GDPR (in Europe),
CCPA (in California), and pending legislation in other states will make this an issue for
just about every developer creating data-centric applications. It’s simply not an option
for developers today to ignore security or to try to “bolt it on” afterwards – you must
design your environment with security in mind from the ground up.

The Actian Zen database, formerly known as Actian PSQL, Pervasive PSQL,
Pervasive.SQL, and even Btrieve before that, offers a number of security options to help
you protect your data. While some of these options were included in very early releases
(i.e. Btrieve), others were added in Pervasive.SQL V8.5, and still others have been added
in the years since.

Let’s start by examining a list of the basic security features that are available today:

1. Data File Owner Names
2. Across-the-Wire Encryption
3. SQL Authentication and Access Control
4. Domain-Integrated SQL Security
5. Advanced Btrieve Security

Each security feature protects a different area of the system, so you may find yourself
using one or several of these features together. Let’s dig a bit deeper and see how each
one can protect your data.

Data File Owner Names

The database engine has almost always supported the concept of an owner name, or an
individual password, on each data file. The owner name allows a developer to restrict
access to the underlying file in two different ways:

 File Level Encryption
 Access Control

File Level Encryption

File level encryption leverages an encryption algorithm to encrypt the data at rest – i.e.
all of the data, index, and variable pages that are written to the disk are stored in an
encrypted format. When an owner name with encryption is assigned to a file, the
database engine reads, encrypts, and writes back all of these pages in the file, as well as

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 13

any shadow pages, so that all of your data is protected. As the engine reads pages into
cache from that point forward, they are decrypted on the fly and left unencrypted in the
cache while being used. When pages change and must be written back to the disk, they
are encrypted once again on their way to the storage system. Because of the extra steps
needed, the encryption/decryption processes will slow down database disk access.
However, with a suitably-sized L1 cache, the overhead from the decryption process can
at least be minimized.

[N.b. Some have asked about the validity of leaving unencrypted data in memory, as this
leaves data in the cache subject to attack. This is done for performance reasons, as
decrypting EVERY page on EVERY access would be prohibitively slow. Ultimately,
data in memory can be attacked by grabbing a core dump of the database engine process,
which means compromising the kernel or the server console. As such, physical security
of the server itself must always come first.]

Here is an example of a page from a file both without and with encryption, as viewed
with a hex editor:

As you can see, file level encryption will prevent users from accessing your data by
simply reading the data files directly. Because it is an undocumented encryption
algorithm, this data is expected to be fairly secure, as well.

WARNING: If you encrypt your data and the file gets damaged in any way, you may not
be able to use any of the repair utilities to recover information from the damaged file,
because even a single-bit error in an encrypted file can make portions of it unreadable.
Having a backup is of paramount importance!

Access Control

The second control capability provided by an owner name is access control. When an
owner name is assigned to a file, the developer can either require an owner name for
ANY access, essentially locking the user out entirely, or he can allow read-only access
without the owner name. While this seems silly, the real benefit of allowing read access
without an owner name is to protect accounting data or other sensitive information from
inadvertent changes, all while allowing users to run reports or SQL/ODBC queries

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 13

against the data. By allowing read-only access to continue unfettered, the reporting
systems can work as expected, and the developer can rest assured that the users won’t be
changing any data without proper authorization.

Owner Name Levels

These two features are provided by one of four different owner name levels:

0. Require an Owner Name for ANY Access, Without Encryption
1. Allow Read-Only Access Without Owner Name, Without Encryption
2. Require an Owner Name for ANY Access, Encrypt Contents
3. Allow Read-Only Access Without Owner Name, Encrypt Contents

Note that these are not in increasing security order, but rather are defined by two bit flags,
one used to indicate access control, and one used to indicate encryption. If you look
carefully, you’ll see that level 2 is actually the most restrictive, since the data on the disk
is encrypted and an owner name is required in order to even open the file. Level 1 is the
least restrictive, because data is not encrypted and anyone can read the data, even without
an owner name.

[N.b. You may wonder about the value of owner level 3 – why would you encrypt the
data, but then allow anyone to read it without the owner name? This is more for
protecting information from being copied off and accessed with some other tool. Given
the pervasiveness of the PSQL engine, though, it takes very little expertise to set up a
small engine and access the data directly, so this really provides minimal protection.]

Enabling and Disabling Owner Names

You can enable an owner name on an existing file with the GUI Maintenance Utility
using the Set – Clear Owner… menu option, using the Btrieve or Btrieve 2 API from an
application, or with the BUTIL utility from the command line like this:

 BUTIL –SETOWNER <filename> /O<owner> <level>

Where <filename> is the data file name, <owner> is the owner name (or *, which allows
the user to enter the owner name from the keyboard), and <level> is the owner level from
the numbered list above. Removing an owner name is done similarly (with the
CLROWNER command).

A “standard” owner name is an 8-byte string, usually defined by normal ASCII characters
(though this is not a requirement). Pervasive PSQL Summit v10.10 introduced the
concept of a long owner name – enabled by adding the /L switch to the BUTIL command
or an extra checkbox in the GUI – which then allows for a 24-byte owner name string to
further improve security. Files with long owner names can ONLY be opened by v10.10
and newer database engines, but this does provide a stronger (128-bit) encryption

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 13

algorithm, too. Here, you can see the same page shown above, but encrypted with the
more advanced algorithm:

If you are running PSQL v13.30 or above and need an even stronger algorithm, then
consider upgrading your database files to the v13.x file format, where a file with a long
owner name will be encrypted with a true AES-192 algorithm.

If you have Zen v14 and use long owner names up to 24 characters, then you’ll also get
the AES-192 encryption algorithm, but if you have an owner name with a length from 25
to 32 characters, then you’ll go one better with AES-256 encryption.

Trade-Offs When Using Owner Names

As with any security solution, there are tradeoffs to using owner names. First off, every
time you want to access a file, you have to now provide the owner name, which gets
tedious for the application support personnel. While each file can have its own unique
owner name, most applications use tens or hundreds of files (if not more), and most
developers elect to stick with the same owner name for every file, limiting the
complexity. Further, many developers never change the owner name on the files, as there
is a considerable amount of work (and system downtime) in doing so. Finally,
applications must include owner names in the application, so they either need to hide the
text or leave it possible for a hacker to extract the owner name from the application code
itself.

WARNING: If you enable owner names and then forget your owner name, you may lose
access to your data. Whatever you do, document your owner name and don’t lose it!

Trade-Offs When Using Long Owner Names

If you elect to use LONG owner names, then you do need to be aware of some additional
restrictions. If you are using a v13.x file format but enable AES-256 encryption with an
owner name of 25-32 characters, then the file will not be able to be opened in any version
prior to v14.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 13

If you elect to use any long owner names and the v13.x file format, you must have a
minimum of v13.30 to be able to open the file. Attempting to open a v13 file on v13.21
or older will fail with an error.

Across-the-Wire Encryption

Across-the-Wire Encryption was added in Pervasive.SQL V8.5 and serves to protect data
in motion, encrypting the data as it is being sent out across the network wire from the
client to the server. This feature can prevent someone with a network analyzer from
capturing traffic and seeing database information in-flight.

Encryption is currently available in three levels, Low (40-bit), Medium (56-bit), and High
(128-bit) and is implemented via the public-domain Blowfish encryption algorithm. Of
note is the fact that there is no performance difference between the encryption levels, so it
is unclear why one would ever want to select a level lower than “High”.

Enabling and Disabling Across-the-Wire Encryption

You enable wire encryption through two three-state values, one on the Zen/PSQL Engine
and one on the Zen/PSQL Client. Start the Control Center and select either Configure
Local Engine (on the engine) or Configure Microkernel Router (on the workstation), and
go to the Access tab. There, you will see two settings:

The default for Wire Encryption on both sides is “If Needed”, which means that
encryption will NOT be used unless this setting is changed. If you set the server to
“Always”, then every connection to that server will be encrypted. If you set a workstation
to “Always”, then every connection from that client will be encrypted. The default for
Wire Encryption Level is “Medium”, though we recommend changing this to “High” to
use 128-bit encryption.

Trade-Offs When Using Wire Encryption

Since every packet will need to be encrypted before transmission and decrypted upon
receipt, enabling wire encryption will definitely slow down your overall system
throughput. While exact overhead will depend on the CPU speeds of the client and
server, as well as total amount of traffic being transferred and server-side workload,
seeing degradation of 10-20% may not be unusual.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 13

Another sacrifice when using encryption is the loss of any ability to capture network data
across the wire and debug applications based on that data. You’ll be able to see that
communications is occurring, but you won’t be able to see SQL queries or Btrieve
records going back and forth. This can make troubleshooting the application much more
difficult.

WARNING: There was a bug in the ODBC layer of some versions that caused extremely
slow communications to occur if you enabled both Wire Encryption and PARC (Auto-
Reconnect) at the same time. If you are running an older release and experience
performance problems with SQL calls, please patch your database engine or disable
either PARC or encryption.

SQL Authentication and Access Control

The security feature is applicable to anyone who has valid data definition files (DDF’s)
and creates a SQL Database within the Control Center for their database. Once a named
database is created to link the DDF’s to the data files, anyone with a Zen/PSQL Client
and an ODBC-based application can access the data. By default, every user on the
network can not only see the data, but they can insert, update, and delete any record they
want, too. Talk about scary!

SQL-level security is therefore the next step towards protecting your data. When SQL
security is enabled on a database, the SQL/ODBC interface will require valid
authentication in order to connect to the database engine. Further, you can grant specific
rights to each user, controlling whether they can see data, change data, or delete data.

Enabling and Disabling SQL Security

SQL Security is enabled most easily through the Control Center by right-clicking on the
database name and selecting Properties, then going to the Security page, and then to the
Database Security tab:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 8 of 13

(The screenshot here is from PSQL v13.10 and higher. If you see only two options, then
you are probably running an older engine version.)

When you select the Enabled radio button, you will also provide the Master password.
The Master password is exactly that – it is the password to be used for the user name
“Master”, which is the default administrative user in PSQL. Note that both the user name
AND password are case sensitive, so take special care when entering your password, and
please do not forget it! You’ll need to provide the Master password if you ever want to
disable security again.

After you click OK here, your database will be secured, and a login will now be required
for all new SQL connections. You will likely want to create user accounts, as well as
optional groups, and then grant rights to the database or individual tables to those
accounts. These changes can be made via the GUI in the PCC or through SQL
commands like GRANT and REVOKE. In the interest of brevity, we won’t cover the
myriad of security options here, but will instead just refer you to the online
documentation for more details on how to do this correctly.

Disabling security is also fairly easy – just log into the database with the Master
password, right-click the database in the Control Center, go to the Properties page, the
Security tab, and change the radio button back to Disabled.

Trade-Offs When Using SQL Security

If you have a Btrieve-level application (i.e. one that works exclusively at the navigational
layer) instead, the SQL security will be completely transparent. In fact, those
applications will never even know that SQL security has been enabled. This makes it
possible to retrofit SQL security onto a large number of older Btrieve applications
without worry.

However, enabling SQL security means that every single SQL/ODBC connection will
now have to authenticate. This can be built into the connection strings used by
applications, or the application may present a separate login dialog for the user to enter
credentials. Poorly-written applications may simply refuse to connect, as they may
provide no facility for entering the username and password! If this is your case, you’ll
need to contact the application developer for help in enabling security.

A big potential problem can be created when developers push out an application update,
especially if they are not aware that you have enabled security. Often, developers will
simply replace your existing (old) DDF’s with a completely new set of DDF’s for the
new application and data structures. Suddenly, your secured database is left with no
security controls at all! This can either disable your SQL security (leaving your system
wide open again), or it can erase all of your carefully-defined users, groups, and access
rights, making you go through the definition process all over again. (This is a good
reason to use scripts to set up groups, users and access rights.)

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 9 of 13

Another potential trade-off is the need to maintain a completely independent security
subsystem within the database. For organizations with lots of users, this can take quite a
bit of time to set up, as well. Further, there is no password complexity requirement, and
no way to force password changes on a periodic basis, so this solution may not meet your
auditing requirements. In fact, the user name and password may be limited to only 8
characters (for v1 metadata, but 128 characters for v2 metadata). Luckily, the operating
system has many of the additional control features you are looking for, so if you are
running v13.10 or above, you can leverage the third option shown in the dialog above,
domain authentication (discussed next).

Domain-Authenticated SQL Security

This new feature was added to v13.10 to eliminate the headaches caused by maintaining a
separate security subsystem within the database. If you select this option and attempt a
SQL login, then there is no separate login prompt required. Instead, the current user’s
login name and password are pulled from the operating system and submitted to the
PSQL engine. The engine then checks to see what AD groups the user is a member of.
One (and exactly one) of these groups should match a SQL security group defined within
the database, which has specific rights granted to it. This user will then inherit all of the
rights of that one group. As this feature completely eliminates the need for user accounts,
the Control Center will even hide this from the UI, too.

Enabling and Disabling Domain-Authenticated SQL Security

See the previous section to learn how to configure a database for domain authentication.
You will also need to create groups in the database (which can be done with the Control
Center GUI or through CREATE GROUP statements in SQL) that match the names of
the groups defined in Active Directory, as well as rights for those groups. You should
then ensure that each AD user account is a member of one, and only one, of these groups.

While it is not required that you use different group names for AD security and SQL
security, doing so may be easier if your AD groups do not align perfectly with your
application groups.

Trade-Offs When Using Domain-Authenticated SQL Security

As indicated, you must ensure that users are only a member of EXACTLY ONE of the
available groups, to avoid confusing the engine. Otherwise, trade-offs are pretty much
the same as the local SQL security option.

Advanced Btrieve Security

The final mechanism for securing your databases is the most complicated to implement,
but it also provides the most secure environment. As its name implies, this advanced
layer of security is designed to help secure the Btrieve database files, which are otherwise
not protected when enabling SQL-level security.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 10 of 13

The key to understanding Advanced Btrieve Security is in understanding two concepts:

 Authentication is the process of proving who a user is to the environment. This is
commonly done today via a username and password, though biometrics at the OS
level are starting to get more popular.

 Authorization indicates what access rights a user actually has, such that users are
only able to access the data which has been explicitly granted to them.

These two concepts are combined in three different combinations to provide three
different advanced security mechanisms, which are:

Security Model Authentication Authorization
Classic Operating System Operating System
Database Database Database
Mixed Operating System Database

Let’s see how each security model works in a bit more detail.

Classic Btrieve Security

Classic Btrieve security is what you get by default. This security model leverages the
operating system to handle both authentication and authorization. When a user logs onto
a Windows workstation, he or she is given a Security ID (SID) that indicates the specific
user account. This SID is submitted to the database engine when a connection is made
and stored by the engine for tracking purposes. Every time a database file is opened at
the Btrieve level, the database engine compares the access rights of the SID against the
access rights of the file, and either allows (or prevents) access to the file.

The advantage to Classic security is that it is easy to understand, and it has been the
default model since the 1980’s. If a user can see and open the database file at the OS
level, then he or she can open it at the database level. Of course, the reverse is also true –
if the user must be able to open the file within the database application, then he must also
have rights to the file at the OS level – which leaves the file open to being read, updated,
or possibly even deleted. This is great if you trust your users, but a disgruntled user can
easily cause lots of havoc in a system with OS rights to the raw files, and a corporate spy
with even read-only access can easily extract your entire customer list with a simple file
copy command!

Important Note: This description applies to the Server engines only. The Workgroup
Engine does not enforce any operating system rights at all. If you are using the WGE,
then any user who knows the location of the file can access it!

Database Btrieve Security

With Database security, we can completely remove the operating system rights from the
mix. Instead of authenticating within the OS, we instead authenticate separately to the

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 11 of 13

database engine. Database security requires that SQL-level Security be enabled, and that
users (and optional groups) be configured properly with appropriate rights. Applications
can then either request a username/password combination to submit to the engine (via the
Btrieve Login command or through a URI), or the PSQL Client can pop up a separate
dialog to obtain access credentials. These credentials are then compared against those
stored in the database itself, and the account privileges are used to control access rights
from there.

The primary advantage to security method is that there is NO requirement for operating
system rights, so the rights to the underlying files or folders can be completely revoked,
securing the data from OS-level access, and thus limiting the ability to copy off the files
or for malware to encrypt them. On the other hand, you must set up and maintain SQL
security, and every time you add a new user to the OS, you have to also remember to
explicitly add them to the database, unless you are using generic credentials from within
the application. Another downside is that the SQL security implementation does not
provide for password complexity rules or mandatory password changes every X days.

Mixed Btrieve Security

Mixed security is not a combination of the two above mechanisms, but rather is simply a
mixture of using the OS for your authentication and the database for authorization. The
OS is a superior authentication solution because it already allows for all of the password
complexity and change features required by many auditors, and it can leverage more
complicated biometrics quite easily. After you have authenticated to the OS, these
credentials (i.e. the authenticated user name) are passed to the database for authorization
purposes, and the SQL-layer security handles controlling access.

As with Database security, you can restrict or completely eliminate OS-level access
rights to the database files and folders with this solution. Because the OS is handling
authentication, you can use the stronger requirements (controlled at the OS layer) for
password complexity and change rules. The only requirement is that you set up a user
name in the SQL security layer that exactly matches each user in your OS security
environment.

Important Note: As indicated in the section on Classic Security, the Workgroup Engine
does not enforce any operating system rights at all. If you are using the WGE, it is not
possible to use Mixed Btrieve Security.

Enabling and Disabling Advanced Btrieve Security

If you decide that you want to use Advanced Btrieve Security in a mode other than
Classic, your first task is to decide which method is best for you, Database or Mixed.
Then, you need to enable SQL-level security on the database and configure the groups,
users, and access rights within the database environment. Finally, you go back to the
PCC, log into the database as the Master user, then right-click on the database name,
select Properties, select the Security page, and then select the Btrieve Security tab:

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 12 of 13

Once you are here, you can switch to either Mixed or Database security. Note that once
you have selected one of these security models, you will need to first disable SQL
security before you can switch to a different model.

Trade-Offs When Using Advanced Btrieve Security

While it sounds like this is the perfect way to lock down your system, there are some
caveats that you must be aware of. There’s actually so many that we need a numbered
list to handle them all!

1. Because SQL Security is a requirement, you must first be sure that all applications
that access the database via SQL are able to provide SQL logon credentials. For
some applications, this is only a matter of adding “UID=<user>;
PWD=<password>;” to the connection string. However, some applications may
not support this out of the box.

2. You will need to set up user names and access rights within the SQL
environment. If you take a shortcut and assign rights at the database level, then
users may have access to files that they shouldn’t have. If you assign rights at the
individual table level and the developer adds new tables to the database, your
application may break until you can add rights to the new tables to each
user/group that needs access.

3. Sometimes, developers pushing out a new application release will replace your
DDF’s, which will break the entire security model of the application, since users
will no longer be available in the SQL Security layer.

4. Some applications store non-database files in the database data folders. This can
include files like INI or configuration files, simple text files, exported CSV or
XML data, or even temporary flat files used to store intermediate results for a
report. If you remove OS-level access rights to an application like this, then you
risk breaking that application.

5. Some applications access database files using OS-level commands, such as
DELETE, RENAME, and so on. If these accesses only occur at known times
(such as a major application update), then you can take care to use an
administrative login that does have rights to perform these tasks. However, if an
application creates a temporary database file for collimating reporting data and
then attempts to delete that file using an OS command at the end of the process,

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 13 of 13

this last operation may fail. (Developers can use the DeleteFile and RenameFile
functions within the database to handle this, but many do not.)

6. If applications do not use the Btrieve Login command to link to a database, then
another method of linking a data set to a database name is needed, such as a URI
or by using IDSHOSTS redirection. Further, if the user ID and password are not
provided to Database Security, an extra login dialog box may be needed to
authenticate properly, which can be disruptive to the users.

7. There is always a risk of an over-zealous system administrator removing access
rights to a folder from everyone, such that nobody can access the files any more,
making it even impossible to back up the data set!

8. Finally, troubleshooting an environment like this is much more complicated, as
only specific (administrative) users will have the rights to see the database folder
and make certain changes.

What Should I Do To Secure MY Data?

There is no one right answer to this question, of course. Adding security will always
require additional administrative effort to implement and maintain, especially as
applications and databases grow and change, and extra security will always act to slow
the access to critical data. However, security is becoming more and more important in the
face of legislation and the latest “best practices” in any data-centric environment.

The best thing we can say at this time is simply to “give your database the protection it
warrants.” A simple reporting database may not require much in the way of security, but
an ERP system storing invoices, credit card numbers, and other such financial data
should certainly be protected with one or more of these mechanisms.

If you still can't get it to work, contact Goldstar Software and let us work with you to
help! Please note that this may be a billable support call if you have already used up your
free support time.

