

Validating Your
PSQL Database Backups

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 7

Validating Your PSQL Database Backups
Last Updated: 09/15/2016

Do you have a mission critical database environment? Do you have one of those new-
fangled hybrid/cloud backup solutions? Is your PSQL database data REALLY protected
from disasters, rogue employees, and malware attacks?

A Bedtime Story, or Perhaps a Nightmare

Recently, we were tasked with helping a client recover data from their mission-critical
database which had been rendered useless by a Cryptolocker-style, data-encrypting,
malware attack. Normally, this would be no big deal, as we would recommend that they
just restore from the latest full backup, take the loss of data involved, and go on about the
day normally. However, this was not going to be a normal day.

This client had recently moved to a new virtual server, and they had also implemented a
brand new hybrid/cloud backup solution. This particular solution was configured to scan
their server for data changes every hour, take a VSS snapshot to get the data into a
consistent state, and then copy the latest changes to a local data repository. After the
hourly snapshot completed, the local device pushed the changed data to the cloud,
providing a complete disaster-recovery solution, just in case the entire data center melted
down. With local data on the repository, local restores could be done very quickly, and
with the data in the cloud, a new virtual machine could be stood up in the cloud data
center, recovering from a full-fledged disaster in minutes. What a great idea!

What they had not known is that the backup solution was NOT capturing every disk
write. Instead, it was ONLY looking at changes to the size and timestamp of each file
(often called an incremental backup), and then using that information to decide if a file
needed to be backed up. It then took the changed data files and applied them to the
original “full” backup of the server on the local device (and in the cloud), and then
reported to have successfully built a full, restorable copy of the server. This solution was
silently doing its job every hour of every day, typically backing up 30-40MB of data each
hour, and nobody questioned it.

While a backup like this would have been fine for a gaggle of spreadsheets and other
such documents, the Actian PSQL database required by their mission-critical application
is a very different animal. In order to optimize performance, PSQL writes directly to the
database files themselves, bypassing the OS cache. The net result is that the file
timestamps are ONLY updated when the file is completely closed by the database engine,
meaning that ALL users are done using that database file. While this wouldn’t be an issue
for a typical application used only during the day (as all files would be closed at night
and thus backed up nightly), a mission-critical system can be accessed by users for weeks
or months at a time.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 7

So, what happens when these two worlds collide? Each PSQL table timestamp is
updated ONLY when all users are out of the application. For some files, this means that
the changes are immediately written, the timestamp is updated, and the file is backed up
the next hour. Other files were only closed at the end of the day, and therefore they were
only backed up during the LAST backup of the day. Indeed, for this environment, some
of the files were NEVER closed, and thus were never backed up by the incremental
backup process. This meant that the only valid backup of these files was from
immediately after the last server reboot – some 5 weeks earlier!

If you know anything about a relational database, you can already see where this is
heading. After the malware attack, they opted to perform a full restore of their server
locally. They saw the varying timestamps of the files, but didn’t think anything of it at
the time. However, after they tried to launch the application, several of the files turned
out to be corrupted, because they were stored in multiple extents – file segments – and
each extent was from a different point in time. They also found that the relationships
between some database tables were completely mangled. In fact, we found two related
tables where the parent (header) table was dated a week older than the child (detail) table,
leaving over 300 sets of orphan records in the child table after the restore!

Needless to say, restoring the data from the cloud wasn’t any better, because the core
problem was that the database was never backed up properly in the first place. Because
of this core problem, even though they could restore a bootable copy of the server in the
cloud, the data stored thereon was just as useless from a database perspective.

So, after much consternation and discussion, we finally were able to determine that the
ONLY usable backup would be the FIRST one immediately following the last system
reboot. Although this was a full 5 weeks prior, the database would be the “closest” to
actually being in sync, because all of the files would have been closed during the reboot
process, and the file timestamps would be as close as they could ever be to each other.

Now I’m not one to blame Murphy’s Law for things like this, but you all know what’s
coming by now, right? Because of the amount of data being backed up on all of the
various servers being protected, there was not enough storage on the local appliance to go
back that far. Further, the data retention in the cloud was set to only three weeks, so there
was no way to restore the data from 5 weeks prior! Argh!

Now, with no backups, what other options were there? Go back to the old server? Oops
– the cutover was 5 weeks prior to all of this excitement, and the old server was already
obliterated, effectively eliminating that option. What about restoring a backup of the old
server? They were long gone, too. The ONLY remaining option was to restore the
mangled data to an off-line folder for reference purposes, and then create an entirely
NEW database for the mission-critical application and start entering ALL of their system
data over again from scratch. Ugh.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 7

Validating Your Backups

All of this leads up to the real purpose behind this paper – validating your backups. But
what does it mean to validate a backup?

In short, validating a backup is the process of ensuring that your restored data is complete
and perfectly valid, ready for production use in case you ever had to do a full restore of
your environment. However, like with most things in life, there are various degrees of
validation, and your current validation process may only be giving you part of the picture.
Let’s look at some of the common validation processes:

 Server Boot Screen: Does the backup of your server boot properly? Some
backup solutions include the ability to virtually boot the backup image and show
you the logon screen as proof that the backup is complete. However, you should
note that this ONLY means that the OS is complete and boots with no issues. It
tells you NOTHING about the applications or data that may be on that server.

 Checking File Timestamps: What if you boot the server, login, and check the
timestamps of a few critical database files? What about checking ALL database
file dates? If you use this option, you clearly didn’t learn anything from the above
story! When files don’t get new timestamps, this solution is meaningless.

 Boot, Login and Application Launch: While more complete than a simple boot
screen, actually logging into the server and launching the application is also not
really complete. Sure, it will tell you that the environment seems to function, but
you could be looking at data from 6 months ago!

 Complete Data Validation: Yes, the only way to completely validate everything
is to not only launch the application, but also run some simple reports or search
for data that was entered shortly before the backup was taken. This is far more
complicated than most people want to do, but it is really the ONLY viable way to
validate your environment.

In short, this is a non-trivial exercise, but to ignore such an exercise is to do so at your
own peril (or that of your data, anyway). You MUST allocate sufficient time to
completely test your data restoration process in order to ensure that your backups are
valid for what they are needed for. After all, you don’t do backups to do backups – you
do backups to do a restore!

PSQL-Specific Validation

If you have a backup solution that has not been tested yet, then you will definitely want to
test it to ensure that you are getting clean backups. Of course, the best option is to follow
the above Complete Data Validation process and prove to yourself that everything is
good.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 7

Luckily, there is an easier way. We have built a straightforward (if lengthy) testing
process that will allow you to test your backup solution to confirm that it is properly
backing up your PSQL data. You should follow these steps EXACTLY:

1. Create an empty directory on your server where it will be backed up normally.
2. Copy a medium-sized database file from your application into the new folder.
3. Wait for the next backup window and verify that the file is backed up. Note the

timestamp on this file.
4. Open the PSQL Function Executor.
5. Using the File/Open dialog box, open the database file from the test directory.
6. Click the StepFirst icon () in the upper right corner to read the first record.

Data from the first record will be displayed in the Data Buffer.
7. Modify one or more bytes in the Data Buffer section of the screen. You can

change anything you want, such as putting in the current time so that you can
identify it later on. (The changes won’t break your application, because this is a
private copy of your database file, of course.)

8. Click the Save icon () in the upper right corner to save the record. DO NOT
CLOSE THE FUNTION EXECUTOR! Just let it sit there on the screen. This
simulates a user running an application all day long and never signing out.

9. Check the timestamp of the file. Assuming the System Cache setting is OFF on
your environment, you should see that although the data has been written to the
file, the timestamp has NOT been changed.

10. Wait for the next backup window to complete.
11. Close the Function Executor.
12. Check the timestamp of the file – it should now be updated to the current time.
13. Wait for the next backup window to complete.

At this point, you have three separate backup snapshots that include this file. We’ll call
them A, B, and C. From your backup solution, restore the file from each of these
instances in turn. (You may find it easiest to restore them each to a separate folder.)

When you look at the data files in the folders, you should see that file A has the original
timestamp of the file that you copied into the directory. File B should have the same
(original) timestamp. File C, however, has the new timestamp, which should be the time
that you closed the data file.

It is now time for the moment of truth! Using the Function Executor, open each file in
turn and read the first record:

 File A should contain the original, unchanged data record. Since this backup was
taken before we did anything, this should not surprise you, and every backup
package should get this one right.

 File C should contain the final, changed data record. Since this backup was taken
AFTER we closed the file, the file’s timestamp would have been updated, and the
file should have been backed up normally. Again, every backup package should
get this one right.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 7

 What about File B? Remember that the data in this file was changed on the disk
BEFORE the second backup, but since the file was not closed, the timestamp did
NOT get updated. If you open the file, read the first record, and see the
CHANGED data, then you can rest easy – your backup solution is capturing your
database changes properly. However, if you open the file and see the ORIGINAL
data, then you have a problem -- your backup solution is NOT backing up PSQL
databases correctly, and you need to address this defect before a full system
restore is ever needed, or you will be dealing with a similar massive loss of data.

Solutions and Workarounds

As indicated above, the PSQL database will, by default, only update file timestamps
when a file is closed by all users. This can leave some “hot” files (i.e. those opened by an
application 24x7) with dates that are very old when compared to other, less-used files.
Further, this causes any incremental or differential backup solution that uses the file
timestamps as a trigger to miss the file on multiple, successive backups, even though it
may be continuously updated throughout the day.

There are, however, a few other solutions to consider:

1. Change Your Backup Solution Settings: You may be able to find a
configuration setting within your backup solution that forces it to identify
changed files more completely. For example, if the software supports using the
Windows Change Journal (a.k.a. USN) instead of timestamps, then enabling this
option might just resolve your issues quickly and easily. If you don’t find
anything, contact the solution developer and ask for help. Sometimes, these
switches can be buried, mislabeled, or even hidden in the registry or some other
configuration file.

2. Force Users to Exit: If you are not running a 24x7 operation and can afford a
downtime window every night, then the simplest solution is to first request that all
users exit the application before they leave for the day. Then, you can use the
PSQL Monitor (or a tool like Goldstar Software’s free KillUser tool) to kick out
any remaining users immediately before your backup starts. Since all users are
out, all files are therefore closed, and they all have current timestamps for backup.
Of course, this doesn’t work well if you are running a mission-critical system with
a requirement for 24x7 access.

3. Enable System Cache: The PSQL setting “Use System Cache” directly controls
whether the database engine will leverage the OS cache or not. By default, this is
OFF, which provides for faster disk writes. (By bypassing the OS cache, the
system gets substantially better throughput.) Leaving it off also prevents double-
caching on database reads, where the OS caches the data AND the database
engine caches the data – further wasting memory. If you enable the System
Cache setting inside the engine, then all disk reads and writes are sent through the
OS layer. Again, this causes double-caching of reads and slower writes, but this
ALSO allows the OS to update the file timestamp on each and every disk write!

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 7

If your system is lightly loaded and you can afford the performance penalty, then
enabling the System Cache is an easy way to fix this issue.

4. Leverage Continuous Operations Mode: Continuous Operations Mode is an old
standby, available as a trusted backup solution since Btrieve 6.x was released in
the early 1990’s. This special mode “freezes” the files in a snapshot at the data
file level, eliminating the need to use VSS or any other mechanism to get a clean
backup. However, it also re-timestamps every data file, ensuring that other backup
mechanisms will still work, too. You can enable ContOps mode through the
BUTIL application or via the more-automated PSQL Backup Agent. (Backup
Agent is a free add-on for PSQLv11 and newer Server engines, and can be
purchased for the PSQL Workgroup Engine or older Server engines at an
additional cost.) Using the two methods (Continuous Operations Mode and VSS
Writer) together is neither recommended nor supported by Actian, so if you use
this option, you should disable your use of VSS with your database backups. (You
can still use it for your OS backups.) If you are interested in this solution, please
read our other white paper on Proper Backups so that you understand the possible
pitfalls that you must avoid, such as backing up the delta files.

5. Update Timestamps with the Backup Agent: Activating the Backup Agent for a
short time has a very interesting side effect – it forces ALL of the opened files to
be put into Continuous Operations Mode, which then gives them a new
timestamp! The trick here is to issue the PVBACKUP –ON command, and then
immediately issue the PVBACKUP –OFF command, so that ContOps mode has a
chance to complete on every file before the VSS snapshot occurs. If you do this,
then EVERY open file will get a new timestamp, and therefore every open file
will be seen as “different” by the backup environment, whether they have been
actually updated or not. This may cause your differential or incremental backups
to include a lot more data files than you would normally expect to see being
backed up, increasing backup system storage needs. However, you are at least
guaranteed to get all of the changed files.

6. Change Backup Solutions: As you can see, each of the above solutions has its
own down sides, and none of them may be what you really want to do. In that
case, changing to a different backup solution altogether may be in order. There
ARE backup solutions that work correctly with PSQL available!

If you still can't get it to work, contact Goldstar Software and let us work with you to
help! We can provide assistance and ideas to make it possible to grab weekly off-site
backups, nightly images, hourly snapshots, and even continuous, near-real-time
replication – everything you need to keep your data safe and your business running,
regardless of what happens in the big, scary world out there….

