

Virtualizing PSQL
Database Servers

A White Paper From

For more information, see our web site at
http://www.goldstarsoftware.com

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 2 of 13

Virtualizing PSQL Database Servers
Last Updated: 12/18/2018

As servers continue to advance in power, adding more and more memory, disk space,
processors and cores into each physical box, many system administrators are finding that
their servers are woefully under-utilized. Using a server to only a small percentage of its
capacity wastes resources such as electricity, cooling, and space.

For some time, the solution was server consolidation, in which multiple servers
performing single tasks were consolidated onto a single server, performing each of those
tasks separately. For example, setting up a single server to handle DNS, DHCP, Email,
file services, print services, database services, and more was very common. This works
well in smaller environments, but a failure of one process can often take down the entire
server.

Virtualization has arisen as an alternate solution to the utilization problem. A virtualized
environment takes one or more virtual servers and implements them on top of a single
physical hardware platform. This is controlled by a component known as a hypervisor,
which allocates resources (CPU, memory, etc.) to each virtual machine (VM) and
translates I/O requests from the virtual machines to the physical hardware underneath.
This translation layer make the virtualization almost invisible to the guest operating
system and applications, which believe that they are running on dedicated hardware.

Before we talk about the details of running PSQL in such an environment, let's review the
core advantages and disadvantages of virtualization.

Advantages of Virtualization

The advantages or virtualization have been proven in many environments. Virtualizing
your under-utilized servers can provide real "hard" savings, including many of the
following:

 Lower physical hardware costs, since one piece of hardware can now provide
resources to numerous virtual servers.

 Lower software licensing costs, since some software is priced differently for
virtualized servers, and some operating systems come with licenses that offer VM
access on multiple machines for "free".

 Lower electricity usage and costs, since there are fewer hardware servers that are
more heavily utilized, the power loss due to power supplies and underutilized
servers can be minimized.

 Lower cooling requirements and costs, since having fewer hardware boxes
generates less heat, thus reducing the need to cool the server room.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 3 of 13

 Less rack space needed, due to having fewer physical servers. This can make the
data center or server room small, further cutting costs due to office space and
cooling.

 Fewer (or smaller) hard disks are required, since the virtualized drives use up only
as much physical drive space as they actually need at the time. Physical drive
space can be assigned dynamically as the servers grow, reducing the need to over-
buy disk space or plan for upgrades on a periodic basis.

 Less noise in the office or server room, due to having fewer servers and a less
powerful cooling unit.

 Fewer switch ports required to connect all of the servers, which can offer cost
savings on the network buildout and simplify cabling installations.

Additionally, you can see "soft" benefits as well:

 Easier remote access via dedicated remote access consoles to many servers,
eliminating or reducing the need for expensive keyboard/video/mouse (KVM)
hardware switches or other "lights-out" (ILO) solutions.

 Faster provisioning of new machines, since new "servers" can be brought on-line
in a matter of minutes by copying an existing "base" server environment to a new
one and making a few minor modifications.

 Easier splitting of services onto dedicated machines. Due to hardware and OS
costs in the past, many sites used to consolidate their servers and have many
services running on one box. This led to a problem if one service crashed and
needed a reboot, it often impacted other services. Now, the services can be easily
broken up into their own "sandbox", which can be rebooted without impacting
anyone else.

 Dynamic resource management is gained by giving you the ability to add more
memory or CPU resources to servers that need more, and to remove resources
from servers that need less. This makes it much easier to respond to the changing
needs of the servers in the data center over time, reducing the need to physically
upgrade servers. The same can be said for disk space, since you can allocate disk
space to servers from a large pool of physical disk space, and servers that will
need lots of disk "eventually" don't need to suck up that space immediately.

 Easier system snapshots can now be taken, as VM's are stored in physical files on
the host system or SAN. You can easily shut down a machine, take a snapshot of
the machine or backup copy, and restore that snapshot very easily, using normal
file copy tools instead of needing "bare metal" restore tools.

 Improved fault tolerance gained through the ability to move a VM from one
physical platform to another, allowing hardware maintenance to occur without
the users knowing that anything is happening. Advanced VM systems also offer
the ability to migrate machines "in use", with zero downtime.

 Ability to run older applications and even unsupported operating systems on
newer hardware, providing a migration path for legacy systems. This can be
extended to non-production backups of data which must be retained due to legal

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 4 of 13

requirements, such as health care data. Physical machine configurations can be
migrated to VM's for this purpose, and then shut down when they are not needed.

Disadvantages of Virtualization

Like any other technology, there are disadvantages to virtualization. Here's a short list:

 While some hypervisors may be free, others may have a cost to acquire,
depending on the features needed. Like with any other technology, the more
features you want, the higher the cost.

 Even with free hypervisors, there may be a learning curve to understanding how
to use the provided tools, so there may be required training or other time-related
costs.

 Hardware failures can easily impact numerous servers all at the same time, and a
failing hard disk array can completely shut down an entire environment.

 Administrative costs (managing servers, patching, etc.) is based on the number of
VM's , not the number of physical servers. Making it easy to create a new VM in
an environment means that the system administrators may have to continually
maintain and patch those servers and their hosted applications.

 Higher licensing costs can be seen, especially in "necessary" tools such as anti-
virus, server management and patching tools, and other such packages that are
installed on a per-OS basis.

 Reduced performance can be seen on many VM's with an increased I/O path.
Since any I/O request inside a VM has to pass through a translation layer and then
get passed to the physical hardware, it takes longer to perform each operation.

 More difficult troubleshooting is often the norm in a VM environment, as the
interplay or problems from one VM to another running on the same physical
machine get much more complicated. In other words, a disk-intensive process
running on one VM will have an impact on a disk-intensive process running on a
completely independent VM hosted on the same physical hardware. With
physical machines, you can always isolate the environment, so you would never
see a similar issue.

Virtualization of your PSQL Database Engine

Officially, the PSQL database engine is fully supported in a virtual server with respect to
functionality. This means that Actian will help you troubleshoot any issues due to
crashing or other problems on virtual servers.

However, they do NOT guarantee performance in these environments. This means that if
the system is not performing well, the official reply from Actian may just be "oh well".
Honestly, I cannot say as I blame them, as troubleshooting this type of environment is
VERY difficult, and you have to look at the combined load of numerous virtual machines
all at the same time to understand what is happening on the physical box.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 5 of 13

To "V" or not to "V" -- that is the question. To get a better understanding of the issues,
let's look at how your PSQL client/server application works today. For this discussion,
we're going to concentrate on the use of applications built on the Btrieve interface, since
this comprises the bulk of applications running on PSQL today.

What Does My Application Look Like on a Physical Server?

In our first picture, we're looking at a typical "first" request from a user, where the data is
not yet in the database cache. This happens when a server is first started and the first
users are signing on.

In this environment, the user submits a request to the database across the network. The
request gets to the database server and generates a network interrupt. The operating
system fields the network interrupt, then passes the request to the controlling application,
which is the PSQL Communications Manager. The request is queued waiting on a
Communication Thread to be available in the engine. When a communications thread is
available, the request gets processed. While processing, the engine determines that the
data is not yet in the cache. So, it must build up a disk request to find the exact right page
to load. In many cases, this takes multiple disk requests, since we must read file control
records, page allocation tables, index pages, and data pages to read any given record into
memory. Luckily, the database engine has a low-latency, high-speed connection to the
disk drives, so the time to complete multiple reads is usually minimized here.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 6 of 13

Once the data is in memory, subsequent database reads can be handled directly from the
database cache memory, and the need for the disk accesses disappears. This is what we
gain by having a suitably large database cache, as shown in this picture.

We still have the round trip time from the user to the server and into the engine, but since
the data is already in RAM, we can avoid the disk I/O and return data immediately. Since
memory access easily provides 1000x the performance of disk access, this simple change
can give us a tremendous performance gain, usually by a real factor of 100x or higher.
This gain is why careful consideration of your database cache memory is essential to
getting the best performance in your Pervasive environment.

What About the Network Round Trips?

If you look carefully, you'll see that there is some additional overhead here. The request
has to get from the user workstation to the server and the reply has to get back. This
round trip time is called the network latency. The amount of latency is determined by the
network links, cabling, number of intervening devices, and more. In a decent
environment, you can expect a round trip time of 0.05ms. Slower servers and networks
may see a round trip time (RTT) of 0.3ms. Wide area networks often have RTT latency
of 10ms or more, because it simply takes that long to get the packet from the client to the
server. You can get a rough idea of latency with the PING command, but for more
accurate values, you'll need a network analyzer.

Now, 10ms doesn't seem like a long time to most people. One thing to keep in mind
about latency is that it impacts EVERY SINGLE REQUEST, regardless of the network

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 7 of 13

bandwidth. The net effect is that it acts as a multiplier on the time it takes to complete
any set of operations. For example, let's say that your application has to read 5,000
records to display a screen of data. If your network environment has 0.05ms RTT
latency, then you would expect to complete this process in 0.05ms * 5000 = 250ms, or
1/4 second. To the user, anything under 1/4 second will seem to be "instantaneous", so
this is considered good response time.

However, run that same application over a high-latency link (with 10ms RTT) and do the
math. You'll see that the process now takes 10ms * 5000 = 50000ms = 50 seconds, or
almost a full minute! Now THAT is an obvious speed problem that your users will
complain about!

What Does My Application Look Like on a Virtual Server?

Now, let's take and move our database engine from a physical server to a virtual server.
In an ideal world, nothing would change -- the application wouldn't know about the
change, the workstation wouldn't know about the change, the server OS wouldn't know
about the change, and the database engine wouldn't know about the change -- so it should
run identically.

Too bad we don't live in an ideal world. Check out this picture:

What REALLY happens is that every network request is first sent to the physical
machine, where it gets intercepted by the hypervisor. The packet is then processed and

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 8 of 13

forwarded on to the virtual machine. After passing through the OS, the request finally
gets to the database engine. If disk I/O is required, the I/O requests are sent to the "local
hard disk" of the VM -- but this request again gets intercepted by the hypervisor,
translated to a physical request, and finally passed along to the physical machine.

Remember our analysis of latency on the network? Well, we just increased the network
latency, because the hypervisor is now "in the way" of the database engine, and the
hypervisor takes a finite amount of time to process each packet and forward it along to
the virtual server. Even if the additional network latency is only 0.05ms, this could easily
double the round trip times to the server, and double the response time of the application
itself, too.

What about those disk I/Os? Again, we are introducing additional latency in every single
disk I/O here. We may be making three disk I/O's, but they are going through one at a
time, not all at the same time. The net effect is like putting up stop signs on a highway.
You may still have three lanes of traffic with plenty of capacity, but each vehicle must
keep stopping periodically, making it take longer to run the round trip.

Why Does Increased Latency Impact Database Servers?

Put simply, almost everything a database server does involves I/O operations, which are
all slowed down by the virtualization layer. Network requests are coming in for records,
the database engine has to read one or more disk blocks to satisfy that request, and then
the reply can get sent back. Since the network requests and replies are slowed down as
they pass through the hypervisor, network latency increases. Further, since many
applications are designed to read many small records one at a time, the effects or network
latency are multiplied by the number of individual requests, making the problem worse.

On the disk I/O side, we need to look at the typical Btrieve database file. In many cases,
the page size of the file is 4K or less. (You can check your own page size with BUTIL -
STAT or by creating a Stat Report from the Maintenance Utility.) However, when
starting a new record request, the engine doesn't know which pages it needs to read. So,
it starts with the first page of a file, the FCR. Once it has this page, the engine determines
that it needs to read a 4K index page. However, it first has to read a page allocation table
to find out where in the file the index page resides BEFORE reading the index page.
After reading the first 4K index page, the engine may decide that it needs a second 4K
index page (and possibly a second PAT page), and possibly more. Then, finally, it can
read a 4K data page (and maybe a PAT page) to find the needed data.

Note that each of these requests must be serviced in order -- there is no way to run these
requests in parallel, because the engine doesn't know what page it will need next. As a
result, you can be sitting waiting for 5 to 10 different page reads from the disk. Even at a
3ms read time from disk, this can still take up 30ms of time. Increase the latency to the
disk by forcing it to go through a virtualization hypervisor, and you increase the time
required accordingly.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 9 of 13

Why Does Increased Latency NOT Impact File Servers?

Obviously, people are virtualizing servers all the time and not running into major
performance problems. Why is this? Let's examine how a typical file server or Email
server works.

Typically, users make a request for a file, and then start reading that file 64K at a time.
The first request gets sent to the virtual server, which has to undergo the same latency
issues as it passes through the hypervisor on its way to the virtual server.

The VM finally receives the request and issues a single 64K read from the disk. The
request also has the same latency as a single disk request in the database example. The
main difference from a database server, though, is that we are requesting the entire 64K
block at once, instead of doing individual reads. The OS can do this entire block in a
single function call quite efficiently, whereas reading 64K of data from a database at a
rate of 4K per call takes 16 times the number of round trips (and thus latency)!

Once the data has been read into memory, we then have to get the data to the user.
Again, file servers know exactly what data is being sent, and the typical requests ask for
64K of data at a time. The server sets up a streaming buffer and sends out the first 1500
bytes in a data packet. This packet, like in the database server, is intercepted by the
hypervisor and processed out to the physical network, adding latency to the round trip
time and increasing the delay in the reply.

However, instead of waiting for that reply to get to the workstation and waiting for
another request from the client (thus incurring a round trip time delay), the server instead
streams the remaining data packets across the wire as rapidly as it can. This streaming
effectively eliminates the multiplying factor of the increased network latency, since we
only have to worry about the high latency on the first packet. The net result is that
overall latency is minimized substantially, and the overall percentage drop in
performance is minimal.

Minimizing Latency for Virtual Pervasive Servers

Based on this analysis, we can easily see that virtualizing a PSQL database server will not
be for everyone. However, if you can avoid the high latency operations, then perhaps
you won't have any issues, and you CAN reap the benefits of virtualization.

How can we avoid latency? Simple:

 Eliminate Disk I/O Operations
 Eliminate Network Requests

OK, sounds simple, but it's really not so easy.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 10 of 13

Minimizing Latency by Eliminating Disk I/O Requests

Let's start with the disk requests, because this is the easy one. As previously indicated, if
we store data in the database cache, we can eliminate the need to pull data from the disk.
What would happen if we stored the ENTIRE database in cache? Essentially, the server
would NEVER need to go to disk, and performance wouldn't suffer due to disk latency!

If your database is small, and if your server has enough memory, then you can simply add
up the sizes of your disk files, set the "Cache Allocation" to that amount, restart the
server, and go. Eventually, as users access parts of your database, the database pages will
be fully populated in RAM, and your disk I/Os will be limited to database writes (which
are batched together by system transactions). You can even run a process like Goldstar
Software's BtrvLoad, or the new BUTIL –CACHE function in PSQLv13, to pre-load data
into memory at very high speeds, eliminating the need to wait for the data to load
normally.

However, if you are on a 32-bit operating system, you must remember that there are
limits to the available memory addressing space -- 2GB is the max, and if you try to go
much over a 1GB cache, you may run into this maximum, making your system unstable.
As such, this only works for the smallest of databases.

The next step, of course, is to move to a 64-bit server environment. With x64, we have
access to a whopping 8TB of addressing space, and an L1 cache maximum size of 4TB.
Although nobody is building servers with that much memory yet, some companies have
built servers with 384GB of RAM, and have allocated 200GB to the database engine. In
other words, it is NOT impossible for your virtual server to be granted 48GB of memory
to host your 40GB database environment -- allowing you to cache everything.

Minimizing Latency by Eliminating Network I/O Requests

What about network calls? Unfortunately, unless you are the application developer, this
is out of your hands. Eliminating network calls would require a complete redesign of the
application, using either the SQL interface (which retrieves entire sets of data) or perhaps
the Btrieve GetNextExtended function call, which can read hundreds (or thousands) of
records with a single network round trip. (If you ARE a developer, give us a call -- we'd
be happy to discuss the benefits of these options for your users and help you develop a
working solution with them.)

Luckily, this does NOT mean that you are completely without recourse. As many people
with WAN links are already aware (including you, if you've read this entire paper), the
high latency of WAN links causes performance problems for running applications.
However, it is possible to eliminate this latency by running the applications on Terminal
Services or Citrix machines, such that the applications run on the local network with the
server, and only screen shots and key-presses cross the WAN link.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 11 of 13

Well, can we do the same thing for out virtual box? Certainly! What if we ran the
application directly on the database server itself, via a terminal services session? This is
a dangerous concept and one that you want to forget about from the get-go, since if a user
does something stupid, the entire system can come crashing down. However, for time-
sensitive processes with limited access requirements, this can be a great option. Beyond
that, though, this options gets dicey in terms of server stability, and the increased memory
loads from the terminal services users may impact the database even further.

Another possibility is to use a second virtual machine as a terminal server, and then host
it on the SAME hypervisor/physical server as the database engine. With this layout, the
network packets stay inside the hypervisor and never hit the physical network, which can
reduce network latency. Note that it will not eliminate the latency, since there is now
TWO different virtualized network cards getting involved. You will also lose some
important troubleshooting capabilities, and the increasing demands of the terminal
services box can suck memory and CPU away from the database engine, slowing it down
further, too.

Improving Performance by Selecting the Right Host Hardware

Another often-overlooked component, believe it or not, is the host server CPU. (It really
amazes me that people don’t try to buy fast computers any more!) As described above,
the workload of a database is linear in nature – you must do one thing before doing the
next thing. If you think about it for a second, you’ll realize that this type of workload
benefits most from the fastest core clock speed you can possibly afford.

Sadly, when companies spec out their VM hosts, they don’t think about the workload.
Instead, they postulate that since they want to put as many VM’s on the host as they can
possibly squeeze in it, they should get servers with lots of cores. Seeing a box with 32 or
even 64 cores or more is not unheard of in today’s market. The problem with this
thinking is when you realize that the hardware vendors are trade CPU core quantity for
clock speed! As a result, the database engine gets stuck on a machine running at 2GHz,
and the linear database workload suffers as a result.

Another common issue that we see is systems configured with a high-latency connection
(such as iSCSI) to the disk drives. Under heavy load, the latency of iSCSI is simply too
much to overcome, and performance suffers as a result.

The final issue we see is simply too many virtual cores being allocated. Remember that
PSQL will single-thread each database connection anyway, so the benefits of multi-core
environments are only going to be seen when many users are accessing the server in
parallel, or when the server is executing many long-running SQL queries. Allocating too
many cores in VMware can actually hamper performance by limiting the ability of the
hypervisor to assign the machine to the run queue. In most cases, PSQL actually runs
best with 2 or 4 cores, and adding more cores without needing them simply slows down
the machine.

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 12 of 13

Instead, we recommend bundling your database workloads on a specialized VM host that
is designed for the task. This VM host does not need quite as many cores as other large-
scale VM hosts, but they should be the fastest possible core clock speed you can find. A
3.5GHz core will outperform a 2GHz core by a factor of almost 2:1 on a database
workload. (Remember, though, that Turbo Mode clock speed does not come into play for
virtualization workloads, so always compare the base clock speeds.) Just as importantly,
you should consider using local disk storage for the database loads. If you must use a
SAN, you should ONLY consider a quality Fibre Channel SAN connection, and never
use iSCSI (unless, of course, you can load the entire database into cache). Finally, be
sure to “right-size” your database VM’s in terms of cores, and avoid oversubscribing
resources, too.

Are There Any Ideal Solutions?

I think you already know the answer to that -- no. Everything that we do involves trade-
offs. In short, we can boil it down into a few key concepts:

1. If you must have the absolute best performance, run on physical servers, and run
time-sensitive processes directly on the server console itself.

2. If you run non-performance-sensitive systems (like test systems), then these are
ideal virtualization candidates -- go ahead and virtualize them all.

3. If you want to virtualize for administrative gains (like backups, portability, etc.)
instead of hardware utilization gains, then you should have just one VM hosted on
your physical server -- that of the database server. A one-to-one virtualization
retains some of the benefits of virtualization (but not all), as well as retaining the
improved troubleshooting of a physical environment.

4. Barring that option, get a specialized VM host for your database workloads with a
very fast clock speed.

Beyond these simple cases, you're in a whole new world. You'll need to simply try it out
in your own environment and see if performance is suitable for your users. If not, then
database server virtualization is not for you.

Other Resources

Here are a few web links that provide information about virtualization:

 http://www.vmware.com/
 http://www.microsoft.com/hyper-v-server/en/us/default.aspx
 http://www.microsoft.com/windows/virtual-pc/
 http://www.microsoft.com/windowsserversystem/virtualserver/

And here are a few discussions about the validity of virtualizing in the real world:

 http://blogs.techrepublic.com.com/datacenter/?p=1595

 Information Provided By Goldstar Software Inc.
 http://www.goldstarsoftware.com
 Page 13 of 13

 http://www.brentozar.com/archive/2009/03/why-your-sysadmin-wants-to-
virtualize-your-servers/

 http://www.brentozar.com/archive/2009/03/why-would-you-virtualize-sql-server/
 http://www.brentozar.com/archive/2009/03/reasons-why-you-shouldnt-virtualize-

sql-server/

If you are running vSphere, these VERY helpful papers may help you achieve better
results:

 http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.5.pdf
 http://www.vmware.com/files/pdf/techpaper/VMW-Tuning-Latency-Sensitive-

Workloads.pdf
 http://www.vmware.com/files/pdf/techpaper/latency-sensitive-perf-vsphere55.pdf

Note: Some of these papers are quite a technical read, so I recommend printing them out
and going through them slowly and deliberately when you have a clear head!

Need some help with your PSQL engine performance? Contact Goldstar Software and
let us work with you!

